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SMALL OSCILLATIONS OF FINITELY
DEFORMED ELASTIC NETWORKS
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Linearized equations describing small motions superimposed on finitely deformed
equilibrium configurations of elastic networks are derived. The theory is based on the
so-called membrane model in which the fibres of the network are assumed to be
continuously distributed to form a surface. A consistent linearization method is used to
obtain equations of motion valid for arbitrary underlying equilibrium deformations. Modal
analysis is performed for a sector of a one-parameter family of hyperbolic paraboloids with
non-linearly elastic fibres, and the effect of geometric and material non-linearity on the
frequency response of the network is quantified.
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1. INTRODUCTION

The membrane theory of structural networks has been used for some time in the context
of static analysis [1]. This theory is based on the conception that fibres of the network are
continuously distributed, thereby forming an elastic surface. The model thus emerges as
a special case of membrane theory. In simpler applications of linear versions of the theory,
the equations of equilibrium may be solved by classical methods of applied mathematics
such as Fourier analysis. Such a model thus yields a large amount of information for
relativey modest effort vis-à-vis a discrete network model having a large number of nodes.
In numerical analysis, the use of the membrane model may appear to be a retrograde step,
as the discrete-network equations are already in algebraic form for many cases of interest.
However, a coarse discretization of the membrane equations often furnishes as much
quantitative information as a direct analysis of an actual network containing many fibres.
An equilibrium membrane theory valid for large deformations and strains of elastic
networks was recently developed by Green and Shi [2] for two-dimensional deformations,
and by Steigmann and Pipkin [3] for three-dimensional deformations of arbitrarily curved
surfaces. A general numerical procedure for solving the non-linear equilibrium problem
is discussed in reference [4].

In the context of dynamic analysis, the membrane theory of pre-stressed networks
remains largely undeveloped, apart from certain special treatments intended for specific
applications [5–8]. Moreover, existing works are based on models in which transverse
motions are decoupled from the remaining components. The analysis is then typically
concerned with transverse motion alone [5]. The validity of the de-coupled system is
contingent upon the smallness of the deviation of the pre-stressed configuration from the
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plane. This limitation in turn restricts the applicability of the model. We do not impose
any such restrictions in the present work.

In section 2 we recount the relevant aspects of the non-linear equilibrium theory of
reference [3]. In particular, we demonstrate that the hyperbolic paraboloid furnishes an
exact solution to the equilibrium equations, in the absence of distributed load, if the
network is uniform in the sense that the fibre response functions do not depend explicitly
on position. The linearization of the equations that describe superimposed motions is
carried out in section 3, and the eigenproblem associated with oscillatory motions is
derived. This is specialized to the case of small oscillations superimposed on a stressed
hyperbolic paraboloid. The resulting system is not amenable to analytical solution, as the
differential operator possesses variable coefficients the precise forms of which depend on
the underlying equilibrium deformation and the functions that describe the constitutive
response of the fibres.

In this work we use a finite difference method with co-ordinate mapping to reduce the
eigenproblem to a standard algebraic form, which is then solved by the power method with
deflation [9]. The procedure is described in section 4. The frequency response of a
particular one-parameter family of hyperbolic paraboloids is studied in section 5.

2. FINITELY DEFORMED EQUILIBRIUM CONFIGURATIONS

In this section we present a concise development of the equilibrium equations for finite
deformations of initially flat networks composed of two families of uniform elastic fibres.
A general equilibrium theory for networks of arbitrary initial geometry is discussed in
reference [3]. Thus consider a network that occupies a bounded region V of the
(x1, x2)-plane with a piecewise smooth boundary 1V. Material points are identified with
their position vectors x= xaea $V, where Greek indices take values in {1, 2} and {e1, e2}
is a fixed orthonormal basis. In a three-dimensional deformation of the network, the
particle x is displaced to the position r(x)= ri (x)ei , where Latin indices range over {1, 2, 3}
and e3 = e1 × e2. The gradient F(x) of the deformation x:r(x) is

F(x)=Fiaei&ea , Fia = ri,a , (1)

where the comma indicates a partial derivative with respect to xa , summation on repeated
indices is implied, and the notation a&b is used to denote the tensor product of vectors
a and b.

The fibre trajectories on the reference plane are described by a pair of embedded unit
tangent vector fields L(x)=La(x)ea and M(x)=Ma(x)ea . We take the fibres to be
orthogonal initially, so that L · M=0 and L×M= e3 for all x$V. Let l(x) and m(x) be
the stretches of the L- and M-fibres induced by the deformation. Then

l(x)= =FL= and m(x)= =FM=. (2)

The unit tangents, l(x) and m(x), to the images of the L- and M-fibres on the deformed
surface, are given by

ll=FL and mm=FM, (3)

respectively. Since {L, M} is an orthonormal basis at each x$V, we may write

dab =LaLb +MaMb , (4)
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where dab is the two-dimensional Kronecker delta. Then equations (4), (5) and the identity
Fia =Fibdba furnish the representation

F=FL&L+FM&M= ll&L+ mm&M. (5)

Next, let t be the force in the network, measured per unit length of arc of a material
curve on the reference plane. According to the theory developed in reference [3], this has
the representation

t=Tn, (6)

where

T=Tiaei&ea (7)

is the unsymmetric Piola stress, and n= naea is the unit normal to the curve, lying to the
right as the curve is traversed in the direction of increasing arc length. We remark that
T has dimensions of force/length in the present theory.

If an arbitrary part DWV of the network is in equilibrium with no distributed surface
forces, then the integral of t around its perimeter vanishes:

G1D

Tn ds= 0. (8)

This condition, Green’s theorem, and the arbitrariness of the region D lead to the pointwise
equilibrium equation

div T= 0, Tia,a =0, [x$V. (9)

For wide-mesh networks, the Piola stress is given by the constitutive relation [3]

T= f(l)l&L+ g(m)m&M, Tia = f(l)liLa + g(m)miMa , (10)

where f and g are the fibre forces, each measured per unit reference length of the
orthogonal fibre family. The forces in the actual fibres are f/n and g/m, where n and m
are the number of fibres per unit length crossing the M- and L-trajectories, respectively.
It follows from equations (6) and (10) that t lies in the tangent plane of the deformed
surface at the particle x. Thus the network does not support transverse shear forces.

In general, the Piola stress is work-conjugate to the deformation gradient in the sense
that [3]

dW=T · dF, (11)

where W is the strain energy of the deformed surface per unit area of V, and dW is the
increment in W associated with an increment dF of the deformation. Here the notation
A · B is used to denote the scalar product, AiaBia , of arbitrary tensors A and B. The form
of the strain energy function may be deduced from equations (5) and (10) and the identities
l · dl=0 and m · dm=0; the latter follow from the fact that l and m are unit vectors. Then
the right side of equation (11) is dW= f(l) dl+ g(m) dm, and we obtain

W=F(l)+G(m), (12)

where

F(l)=g f(l) dl, G(m)=g g(m) dm. (13)
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This implies that the response of a family of fibres is affected only by stretching of that
family and that no energy or stress are required to shear the fibres. These conditions were
imposed a priori in reference [3] to derive the present model from the general theory of
elastic membranes.

In the remainder of this work we take the fibres to be oriented along the (x1, x2)-axes
on the reference plane, so that

La = da1 and Ma = da2. (14)

On combining these with equations (9) and (10), we derive the equilibrium equation

[f(l)li ],ada1 + [g(m)mi ],ada2 =0, (15)

which is equivalent to

[l−1f(l)r,1],1 + [m−1g(m)r,2],2 = 0. (16)

Here we have used equations (1)–(3) and (14) to deduce that

ll=Fe1 = r,1, mm=Fe2 = r,2; l= =r,1=, m= =r,2=. (17)

The general hyperbolic paraboloid, defined by

r1r2/r3 = constant, (18)

furnishes a solution to equations (16) and (17) for all elastically uniform networks; i.e.,
for all fibre response functions f(l) and g(m) that do not depend on x explicitly [3]. To
see this, we write equation (18) in the parametric form

r(x)= ax1x2e3 + bx1e1 + cx2e2, (19)

where a, b and c are constants with a$ 0. Then equation (18) is satisfied with the constant
equal to bc/a. Moreover, r,1 and l are independent of x1, and r,2 and m are independent
of x2, so equation (16) is automatically satisfied. The fibre stretches associated with
equation (19) are

l(x2)= (a2x2
2 + b2)1/2 and m(x1)= (a2x2

1 + c2)1/2. (20)

3. SMALL SUPERIMPOSED MOTIONS

We derive the equations that describe a small amplitude motion superimposed on a finite
equilibrium deformation r(x). Thus let r*(x, t) be a finite motion of the network, and let

r*(x, t)= r(x)+ ou(x, t), (21)

where u(x, t) and its derivatives are of order O(1) in magnitude after suitable
non-dimensionalization, and o is a small parameter. This parameter is used here as a device
for distinguishing linear terms from non-linear terms in the limit of infinitesimally small
motions. After linearization of the pertinent equations has been accomplished, o may be
set equal to unity without loss of generality, with the understanding that the resulting
model applies when u(x, t) and its derivatives with respect to x and t are very small in
magnitude compared to unity.

Let r(x) be the mass of the network per unit area of the reference plane V. The equation
of motion of an arbitrary part DWV is

G1D

T*n ds=
1

1t gD

r
1

1t
r* dA, (22)
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where T* is the stress associated with the motion r*. The argument that led to equation
(9) now yields the local equations

div T*= r 12r*/1t2; T*ia,a = r 12r*i /1t2. (23)

Formally, linear equations for the small superimposed motion may be obtained by
expanding the stress about the equilibrium stress T and retaining lowest order terms in
the parameter o. Thus,

T*ia =Tia + oT� ia + o(o), (24)

where the superimposed dot is used to denote a derivative with respect to o, evaluated at
o=0. Substitution of equations (24) and (21) into equation (23) yields

Tia,a + oT� ia,a + o(o)= or 12ui /1t2. (25)

Dividing by o, invoking equation (9) and letting o:0, we obtain the linearization

div T� = r 12u/1t2, T� ia,a = r 12ui /1t2. (26)

It is convenient to introduce stress vectors T� a such that

T� =T� a&ea . (27)

Then T� a =T� ea =T� iaei , and equation (26) may be written

T� a,a = r 12u/1t2. (28)

To obtain expressions for T� a in terms of the motion u(x, t), we first use equation (3) to
rewrite equation (10) in the form

Tia =Fib [l−1f(l)LbLa + m−1g(m)MbMa ]. (29)

Then

T� ia =F� ib (l−1fLbLa + m−1gMbMa )+Fib [(l−1f).LbLa +(m−1g).MbMa ], (30)

where F� ia = ui,a is the gradient of the small superimposed displacement. We note that L�
and M� vanish because L and M are material vectors.

To proceed it is necessary to express l� and ṁ in terms of F� ia . To this end we use equation
(2) to obtain

l2 =FiaFibLaLb and m2 =FiaFibMaMb . (31)

Then

l� =
1
2l

(F� iaFib +FiaF� ib )LaLb =
1
l

F� iaFibLaLb , (32)

with a similar expression for ṁ. From equation (3) it then follows that

l� = liLaui,a and ṁ=miMaui,a , (33)

where l and m are the unit tangents to the deformed fibres on the equilibrium surface r(x).
Substitution of equations (3) and (33) into equation (30) results in

T� ia = {[f '(l)− l−1f(l)]lilj + l−1f(l)dij}LaLbuj,b

+{[g'(m)− m−1g(m)]mimj + m−1g(m)dij}MaMbuj,b , (34)

where dij is the three-dimensional Kronecker delta. Then the stress vectors are

T� a =Eabu,b , (35)
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where

Eab = {[f '(l)− l−1f(l)]l&l+ l−1f(l)I}LaLb

+{[g'(m)− m−1g(m)]m&m+ m−1g(m)I}MaMb , (36)

and

I= dijei&ej (37)

is the unit tensor for three-space. The general linear equation of motion for superimposed
displacements is thus given by

(Eabu,b ),a = r 12u/1t2. (38)

In the remainder of this work we consider networks having uniform mass density
(r=constant) in the reference configuration V.

To study the frequency response of the network, we consider motions of the form

u(x, t)= v(x) exp (ivt). (39)

Then equation (38) yields the eigenproblem

(Eabv,b ),a + rv2v= 0. (40)

The coefficients in this equation are determined by the underlying equilibrium deformation
r(x). For the deformation described by equation (19), it follows from equations (14), (17),
(20) and (36) that

E12 =E21 = 0 and E11,1 =E22,2 = 0. (41)

Equation (40) thus reduces to

E11(x2)v,11 +E22(x1)v,22 + rv2v= 0. (42)

An equivalent system of three coupled scalar equations may be derived by projection on
to the elements of the fixed orthonormal basis {ei}. We do not exhibit this system explicitly
here, however.

An a priori restriction on the eigenvalues may be derived by scalar-multiplying equation
(40) with v:

(v · Eabv,b ),a + rv2=v=2 =0. (43)

The first term may be written in the form

(v · Eabv,b ),a −(Eabv,b ) · v,a. (44)

Integration over the reference plane V and application of Green’s theorem then yields

rv2 gV

=v(x)=2 dA=gV

(Eabv,b ) · v,a dA−g1V

v · (Eabv,b )na ds, (45)

where na are the components of the exterior unit normal to the curve 1V.
For pure displacement problems with time-independent data, the boundary values of

the deformation are fixed and the superimposed motion is required to vanish on the
boundary. It follows that v(x)= 0 on 1V; the boundary integral in equation (45) thus
vanishes identically. Furthermore, with the aid of equation (36) it is possible to show that
(Eabv,b ) · v,a q 0 for all non-zero v,a if and only if [10]

f(l)q 0, g(m)q 0, f '(l)q 0, g'(m)q 0. (46)
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For typical fibre response functions, including those considered in section 5 below, these
inequalities are automatically satisfied whenever lq 1 and mq 1. Therefore, sufficient
conditions for the positive definiteness of the right side of equation (45) are: l(x)q 1,
m(x)q 1, for all x$V. These imply that v2 is strictly positive, which in turn implies that
the configuration r(x) is linearly stable in the sense that the superimposed motion is a
bounded oscillation. In particular, the stability of the hyperbolic paraboloid under fixed
displacement conditions on 1V may be guaranteed by requiring that bq 1 and cq 1 in
equations (19) and (20), provided that these restrictions are compatible with the data.

Dimensionless equations are obtained by introducing a length scale L and a modulus
E, the latter having dimensions of force/length. These are used to define the dimensionless
variables and functions

x̂a = xa /L, v̂= v/L, r̂= r/L, â= aL

and

f
 (l)= f(l)/E, ĝ(m)= g(m)/E, E
 ab =Eab /E,

where a is the parameter in equation (19). We note that the parameters b and c in the latter
equation are already dimensionless. Substituting into equation (42) and dividing by E/L,
we obtain a dimensionless system that is identical in form to equation (42), with the
exception that rv2 is replaced by v̂2, where

v̂=(r/E)1/2Lv. (47)

We remark that the coefficients in equation (42) involve x in a manner that depends
on the non-homogeneous deformation (19) and the particular fibre-response functions
considered. Thus the eigenproblem is generally not amenable to analytical solution.

4. NUMERICAL SOLUTION

We solve the eigenproblem by applying spatial finite-differencing to equation (42), and
then using a conventional power method to find the frequencies and mode vectors of the
resulting algebraic system.

In typical applications, the boundaries of the domain V may be irregular and may not
coincide with co-ordinate curves. This difficulty is addressed by using a co-ordinate
transformation to map the region V to the interior of a square region in a parameter plane
V', which then serves as the domain of the discretized problem.

The particular method used here is the orthogonal mapping algorithm of Ryskin and
Leal [11], which is based on the identities

Dxa =0, a=1, 2, (48)

where D(·) is the two-dimensional Laplacian. We introduce orthogonal curvilinear
co-ordinates j1 and j2 to cover the region V. These are rectangular co-ordinates in V',
chosen such that V'= [0, 1]× [0, 1], and we use them to write equation (48) in the form
[11]

F
12xa

1j2
1
+

1
F

12xa

1j2
2

+
1F
1j1

1xa

1j1
−

1
F2

1F
1j2

1xa

1j2
=0, a=1, 2, (49)

where

F(j1, j2)=H2/H1, H1 =$01x1

1j11
2

+01x2

1j11
2

%
1/2

, H2 =$01x1

1j21
2

+01x2

1j21
2

%
1/2

. (50)
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Equations (49) and (50) yield a non-linear generating system for the functions xa (j1, j2).
This is augmented by Dirichlet conditions that specify the correspondences of points on
1V' and 1V. The equations are discretized by using standard first and second order central
differences, and the resulting non-linear algebraic system is solved iteratively on a uniform
square grid. Here we follow the weak constraint method suggested in reference [11]. (a)
Specify an initial guess for the discrete fields xa (j1, j2). This is accomplished by the
four-point weighted average scheme of Thompson et al. [12]. (b) Compute the initial guess
for the function F(j1, j2) at the nodes using the discrete form of equation (50). (c) Use
successive over-relaxation iteration [12], together with the Dirichlet data, to obtain the next
iterate of xa (j1, j2) from the discrete versions of equation (49). (d) Compute the boundary
values of F(j1, j2) from equation (50), and solve the discrete form of Laplace’s equation,

12F
1j2

1
+

12F
1j2

2
=0, (51)

for the nodal values of F in V'. (e) Return to step (c) and continue until convergence is
achieved.

Once the grid has been generated, it remains to transform the dimensionless form of
equation (42) to a system with j1 and j2 as independent variables. This is accomplished
by applying the derivative formulae

1G
1x1

=01G
1j1

1x2

1j2
−

1G
1j2

1x2

1j11>J,
1G
1x2

=0−1G
1j1

1x1

1j2
+

1G
1j2

1x1

1j11>J (52)

to equation (42), where G is an arbitrary function and

J=
1x1

1j1

1x2

1j2
−

1x1

1j2

1x2

1j1
(53)

is the Jacobian determinant of the transformation from (j1, j2) to (x1, x2). Formulae for
the second derivatives with respect to x1 and x2 follow from repeated application of
equations (52) and (53). These formulae are recorded explicitly in reference [12].

Derivatives with respect to j1 and j2 in the transformed version of equation (42) are then
approximated by central difference operators to derive the algebraic problem

(A){v}=L{v}, (54)

where L(q0) is the square of the dimensionless frequency defined in equation (47),

{v}= {v1(1), v1(2), . . . , v1(n); v2(1), v2(2), . . . , v2(n); v3(1), v3(2), . . . , v3(n)}T (55)

is the mode vector, vi(j) is the ith component of v= viei at the jth node, n is the number
of interior nodes in the mesh, and (A) is the symmetric matrix representing the discrete
form of the differential operator in equation (42).

The frequencies and associated mode vectors are obtained by solving equation (54) using
the well known power method with deflation [9]. In the next section we exhibit the lowest
frequencies and modes for a particular illustrative example. These were obtained by solving
the system

(A)−1{v}=L−1{v}. (56)

Application of the power and deflation methods to this system yields the squared
frequencies in ascending order.
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5. EXAMPLE

As an illustrative example, we consider a sector of a hyperbolic paraboloid with edges
defined by

r1 − r2 =A, r1 − r2 =−A, r3 =B, (57)

where A and B are constants to be specified. According to equations (18) and (19), the
third of equations (57) is equivalent to

r1r2 = (bc/a)B, (58)

where a, b and c are the parameters that define the equilibrium surface. We take the points
of intersection of adjacent boundary curves to be located at the four points with
co-ordinates

(r1, r2)= 1
2(−A+C, A+C), 1

2(−A−C, A−C), 1
2(A+C, −A+C),

1
2(A−C, −A−C),

where

C=[A2 +4B(bc/a)]1/2. (59)

The images of the boundary curves on the reference plane are obtained by substituting
r1 = bx1 and r2 = cx2 (see equation (19)):

bx1 − cx2 =A, bx1 − cx2 =−A, x1x2 =B/a. (60)

We choose the length scale for the non-dimensionalization scheme to be the perpendicular
distance between the parallel lines described by equations (60a, b):

L=A(b2 + c2)1/2/bc. (61)

The length of these lines is

l=C(b2 + c2)1/2/bc. (62)

In terms of dimensionless co-ordinates, the curves (60) are given by

bx̂1 − cx̂2 =A
 , bx̂1 − cx̂2 =−A
 , x̂1x̂2 =B
 /â, (63)

where A
 =A/L= bc/(bc + c2)1/2, B
 =B/L and â is the parameter defined prior to
equation (47). It follows from equations (59), (60) and (62) that

B
 /â=(l
 2 −1)A
 2/4bc, (64)

where l
 = l/L. Thus the mapping from the hyperbolic paraboloid to the dimensionless
(x̂1, x̂2)-plane is completely determined by the parameters b, c and l
 . The region of this
plane enclosed by the boundary curves is shown in Figure 1 for b= c=1·1 and l
 =1·5.
Also shown is a 25×25 mesh generated by the mapping algorithm of Ryskin and Leal.
This region is taken to be the reference configuration for the network. We note that the
fibres are aligned with the ordinate and abscissa. The corresponding sector of the deformed
equilibrium surface is shown in Figure 2.

The computation of the frequency response of the pre-stressed network requires the
specification of the fibre response functions. We take these to be

f(l)=El(1− l−3), g(m)=Em(1− m−3), (65)

where E is a positive constant. These functions are often used to approximate the tensile
response of polymeric fibres at small to moderate strain. The constant E is identified with
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Figure 1. The stress-free reference configuration overlaid with a 25×25 mesh.

the modulus in the non-dimensionalization scheme of section 3. Of course, it is possible
to consider fibre families having different moduli and different functional dependence on
the stretches, but we do not do so here.

For the fixed-displacement problem (v= 0 on 1V), the first three vibrational modes
associated with â=0·6 are shown in Figures 3(a)–(c), respectively. The corresponding
dimensionless frequencies are 2·071, 3·119 and 3·387.

A sequence of computations performed on successively finer grids indicates that
convergence of the first three frequencies is achieved using a mesh somewhat coarser than
the one indicated.

The variation of the fundamental frequency versus the dimensionless parameter â
associated with the equilibrium configuration is shown in Figure 4. We note that each value
of the parameter corresponds to the same material network, as the domain of the network
in the reference plane is fixed for particular values of the constants b, c and l
 . Adjustment
of â thus requires adjustment of B
 such that the right side of equation (64) remains fixed.
This means that an increase of â corresponds to a more pronounced three-dimensional
deformation of the hyperbolic paraboloid. This also induces increased stretching of the
fibres (see equation (20)) and an attendant increase in the fibre tensions. The combined
effect of this geometric and material stiffening is reflected in the observed increase of the
fundamental frequency.

Finally, as the present example has no analytical solution available for comparison, we
have used the foregoing method to solve the classical vibrating membrane problem,

Figure 2. The equilibrium hyperbolic paraboloid corresponding to â=0·6.
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Figure 3. (a) The fundamental mode (v̂1 =2·071). (b) The second mode (v̂2 =3·119). (c) The third mode
(v̂3 =3·387).

withoug grid-mapping, on the unit square. This problem may be recovered from the
present formulation by taking a=0 and b= c (q1) in equation (19). It is straightforward
to show that the e3-component of equation (42) decouples from the remaining components
in this case, and is identical in form to the classical problem. The first five frequencies were
computed on 12×12, 15×15 and 17×17 meshes. Monotone convergence to the
analytical frequencies was observed in every instance, with faster convergence occurring
in the lower modes. The relative error in the fifth frequency was 1% on the 17×17 grid.

To test the grid-mapping algorithm, we repeated the calculation on the unit circle. The
first three modes were obtained using 12×12 and 15×15 meshes. Similar convergence
behaviour was observed. The relative error in the third frequency was 1·32% with a
15×15 mesh. In contrast, the third frequency for the unit square was calculated with an

Figure 4. The fundamental frequency of a one-parameter family of hyperbolic paraboloids: b= c=1·1.
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error of 0·6% using the same mesh density. The difference is due to truncation errors
associated with the mesh-generation algorithm. As expected, the effect of this additional
source of error diminished with mesh refinement.

Finally, we remark that in the example considered, the extra computational effort
associated with the grid-mapping algorithm is significant when compared with that
required for the basic eigenanalysis, particularly if one is interested only in the lower
modes. However, this statement is qualified by the fact that no effort was made in this
preliminary work to optimize the computations. Alternative mesh-generation procedures
should be explored before applying the foregoing method to the modal analysis of large
scale network structures. This is beyond the scope of the present work, which is concerned
mainly with the theoretical development and the presentation of illustrative examples.

6. SUMMARY

In this work we have obtained the consistent linearization of the equations of motion
in the membrane theory of elastic networks. The resulting system is fully coupled with
variable coefficients, the precise forms of which depend on the fibre response functions
and the underlying equilibrium deformation.

The frequency response of a pre-stressed hyperbolic paraboloid was computed using
finite differences together with a grid-mapping method for networks with irregular
boundaries. Quantitative results were obtained for the natural frequencies, and the
fundamental frequency of a one-parameter family of hyperbolic paraboloids was obtained
over a range of values of the parameter, in respect of a certain class of fibre response
functions.
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